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Abstract

The human genome, comprising three billion base pairs coding for 30 000–40 000 genes, is constantly attacked by endogenous
reactive metabolites, therapeutic drugs and a plethora of environmental mutagens that impact its integrity. Thus it is obvious that
the stability of the genome must be under continuous surveillance. This is accomplished by DNA repair mechanisms, which
have evolved to remove or to tolerate pre-cytotoxic, pre-mutagenic and pre-clastogenic DNA lesions in an error-free, or in some
cases, error-prone way. Defects in DNA repair give rise to hypersensitivity to DNA-damaging agents, accumulation of mutations
in the genome and finally to the development of cancer and various metabolic disorders. The importance of DNA repair is
illustrated by DNA repair deficiency and genomic instability syndromes, which are characterised by increased cancer incidence
and multiple metabolic alterations. Up to 130 genes have been identified in humans that are associated with DNA repair. This
review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA-repair
genes and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA
damage.
© 2003 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Fifty years after discovery of the structure of DNA
(Watson and Crick, 1953), DNA repair has become one
of the most interesting topics in modern biology. The
sequencing of the human genome (Lander et al., 2001;
Venter et al., 2001) yielded a first overview of the huge
number of proteins involved in the protection of the
genome. Recently, two papers compiled data of∼130
human DNA repair genes, which were cloned and se-
quenced. Not all of them, however, have been charac-
terised yet as to their function (Ronen and Glickman,
2001; Wood et al., 2001). DNA-repair genes can be
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sub-grouped into genes associated with signaling and
regulation of DNA repair on the one hand and on the
other into genes associated with distinct repair mech-
anisms such as mismatch repair (MMR), base exci-
sion repair (BER), nucleotide excision repair (NER),
direct damage reversal and DNA double-strand break
(DSB) repair. Mutations in genes involved in DNA re-
pair are responsible for the development of tumors and
various hereditary diseases characterised by complex
metabolic alterations (seeTable 1).

DNA repair genes and their corresponding proteins
are also responsible for the development of cytostatic
drug resistance in tumour cells. Historical aspects per-
taining to the field of DNA repair have recently been
highlighted (Friedberg, 2003) and several reviews on
different areas of DNA repair appeared (Hoeijmakers,
2001; Lehmann, 2002; Lindahl, 2001; Svejstrup, 2002;

0300-483X/$ – see front matter © 2003 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/S0300-483X(03)00287-7



4 M. Christmann et al. / Toxicology 193 (2003) 3–34

Table 1
Hereditary human DNA-repair-deficient disorders

Disease Deficiency in Reference

Hereditary non-polyposis colon cancer (HNPCC) MMR: MSH2 PMS1, PMS2 MLH1 Leach et al., 1993; Nicolaides
et al., 1994; Papadopoulos
et al., 1994

Xeroderma pigmentosum variant Translesion synthesis: XPV Masutani et al., 1999

Trichothiodystrophy, Xeroderma pigmentosum,
Cockayne’s syndrome

NER: XPA–XPG, CSA, CSB Vermeulen et al., 1997; van
Hoffen et al., 1993

Ataxia telangiectasia DNA damage signaling: ATM Savitsky et al., 1995

Nijmegen breakage syndrome, Werner syndrome,
Bloom syndrome, Rothmund–Thomson
syndrome

DSB repair: Nbs, Wrn, Blm, RecQL4 Thompson and Schild, 2002;
Varon et al., 1998; Yu et al.,
1996; Ellis et al., 1995; Kitao
et al., 1999

Fanconi anemia DNA cross-link repair: FANCA–FANCG Joenje and Patel, 2001

Thompson and Schild, 2002). However, this field is
expanding so rapidly that it justifies updating. In this
review, we will focus on the function and coopera-
tion of human DNA repair proteins, their regulation,
the corresponding genes and the role they play in
DNA-damage signaling.

2. Reversion repair

2.1. Single-step repair by MGMT

Treatment of cells with SN1 and SN2 alkylating
agents gives rise, to an extent depending on the agent,
to N-alkylated andO-alkylated purines and pyrim-
idines as well as phosphotriesters. One of the most
critical O-alkylated lesions isO6-alkylguanine, al-
though only amounting to less than 8% of total alky-
lations (Beranek, 1990). O6-Alkylguanine, notably
O6-methylguanine (O6MeG) and O6-ethylguanine,
are mispairing lesions providing the main source
of GC → AT transition mutations after alkyla-
tion. Another pre-mutagenic alkylation lesion is
O4-methylthymine, which is induced, however, in mi-
nor amounts (<0.4%). InEscherichia coli, resistance
to alkylating agents is mediated by the induction of
four genes,ada, alkA, alkB and aidB (for review
see Sedgwick and Lindahl, 2002), with Ada being
involved in the repair of O6MeG. In human cells,
O6-alkylation lesions can be repaired in a single-step

reaction by O6-methylguanine–DNA methyltrans-
ferase (MGMT; also known as ATase, AGT, AGAT),
which is the homologue of the Ada (or the constitu-
tively expressed OGT) gene product ofE. coli. The
human MGMT gene is located in the chromosome
band 10q26, and consists of one non-coding and four
coding exons that encode a protein of 207 amino acids
with a molecular weight of 24 kDa (Tano et al., 1990).
The repair protein transfers the methyl or chloroethyl
group from the alkylated guanosine in a one-step
reaction onto an internal cystein residue in its active
centre (for review seePegg et al., 1995). This alkyl
group transfer leads to irreversible inactivation of
the MGMT protein, and targets it for ubiquitination
and proteasome-mediated degradation. The activity
of MGMT has been determined in various human
tumour and normal tissue such as brain, colon, ovary,
testis and breast, revealing a highly variable expres-
sion notably in tumour tissue (for review seeMargison
et al., 2003). MGMT-deficient cells are unable to re-
pair O6MeG and are therefore sensitive to alkylating
agents (Day et al., 1980; Yarosh et al., 1983), while
MGMT transfection provokes expression-dependent
resistance toO6-alkylating agents. It also protects
against alkylation-induced gene mutations, SCEs and
chromosomal aberrations (Kaina et al., 1991). MGMT
knockout mice are viable, show a higher frequency
of spontaneous tumours and are sensitive to treatment
with alkylating agents (Tsuzuki et al., 1996). Con-
versely, MGMT-overexpressing mice show a reduced
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frequency of tumours in liver, thymus or skin (Becker
et al., 1996; Dumenco et al., 1993; Nakatsuru et al.,
1993; Zhou et al., 2001b). MGMT overexpression
specifically protects against tumour initiation without
affecting tumour promotion in two-stage carcinogen-
esis experiments (Becker et al., 1996, 1997). It also
protects against tumour progression (Becker et al.,
2003) upon exposure toO6-alkylating agents. MGMT
was the first mammalian DNA repair gene shown to
be inducible by genotoxic stress (Fritz et al., 1991)
and glucocorticoids (Biswas et al., 1999; Grombacher
et al., 1996), leading to an adaptive response of cells
to the cytotoxic and mutagenic effects of simple alky-
lating agents (Boldogh et al., 1998; Fritz et al., 1991).
MGMT expression is highly regulated by methyla-
tion of both the gene and promoter. Methylation of
the promoter provokes inhibition (Qian et al., 1995),
whereas methylation of the gene results in increased
expression of MGMT (Wang et al., 1992). Methyla-
tion was also shown to be involved in the development
of acquired resistance of melanoma cells towards
chloroethylating anticancer drugs (Christmann et al.,
2001).

2.2. DNA-damage reversal by AlkB homologues

As already mentioned, inE. coli, pre-mutagenic
DNA alkylation damage is reverted by the adaptive
response system comprising the proteins Ada and
AlkB. The expression of not only Ada but also AlkB
in human cells increases their resistance to alkylating
agents (Chen et al., 1994). Whereas the function of
Ada was clarified soon after its discovery, AlkB re-
mained enigmatic for a long time. Only recently its
function has been illuminated, revealing a new mode
of DNA restoration. AlkB specifically repairs methy-
lation damage in both single- and double-stranded
DNA and binds preferentially to single-stranded DNA
in vitro (Dinglay et al., 2000). AlkB displays neither
nuclease nor DNA glycosylase or methyltransferase
activity. Instead it shares similarity with a superfamily
of 2-oxoglutarate- and iron-dependent dioxygenases
(Falnes et al., 2002; Trewick et al., 2002). AlkB repairs
DNA alkylation damage such as 1-methyladenine
and 3-methylcytosine in an oxygen, ketoglutarate
and Fe(II)-dependent reaction, by coupling oxidative
decarboxylation of ketoglutarate to hydroxylation of
methylated bases (for review seeFalnes et al., 2002).

Recently three homologues of AlkB were identified in
human cells which were designated as ABH1, ABH2
and ABH3. The ABH1 gene is localised at chromo-
some position 14q24, contains an open reading frame
of 924 bp and encodes a 34 kDa protein which dis-
plays 23% identity to AlkB (Wei et al., 1996). ABH2
is located in chromosome 12q24 and consists of four
exons. ABH3 is located at position 11q11 and har-
bours 10 exons. Similar to the bacterial AlkB, ABH2
and ABH3 belong to the superfamily of ketoglutarate-
and Fe(II)-dependent dioxygenases, harbour the
Fe(II)-binding motif and share 30.8 and 23.1% iden-
tity, respectively, with the core region of AlkB (Aas
et al., 2003; Duncan et al., 2002). While the human
ABH2 and ABH3 have been shown to rescue MMS
sensitivity of AlkB-deficientE. coli mutants, the role
of ABH1 is not yet clear. Thus ABH1 was shown to
partially protect against MMS-induced cell killing in
E. coli (Wei et al., 1996) which was contradicted, how-
ever, by another report (Duncan et al., 2002), leaving
the question open whether ABH1 is indeed a func-
tional AlkB homologue. Both enzymes, ABH2 and
ABH3, have been shown to repair 1-methyladenine,
3-methylcytosine and 1-ethyladenine, but they differ
in template specificity. While ABH3 repairs RNA and
single-stranded DNA, ABH2 repairs preferentially
single- and double-stranded DNA. It is supposed
that ABH2 and ABH3 remove the methylation in an
alpha-ketoglutarate-dependent mechanism similar to
the AlkB protein, involving oxidative demethylation
leading to direct damage reversal and restoration of
the undamaged base.

2.3. Evolutionary changes of photoreactivation

Other proteins involved in DNA-damage reversion
belong to the photolyase/cryptochrome family (for
review seeThompson and Sancar, 2002). These en-
zymes are monomeric proteins of about 55–70 kD
containing two non-covalently bound chromophores:
the first chromophore is flavin (FADH) and the sec-
ond, folate (MTHF) or deazaflavin (8-HDH). The
photolyase binds to DNA damage induced by UV light
in a light-independent way. The repair reaction how-
ever is light-dependent. Photolyases are able to revert
both cyclobutane pyrimidine dimers (CPDs) and (6-4)
photoproducts [(6-4)-PPs]. Photolyases have been
found in bacteria,S. cerevisiae, D. melanogaster, X.
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laevis, marsupialia and several plants but not in higher
mammals, includingH. sapiens. In humans, pro-
tein homologues to photolyases have been identified
which are no longer required for DNA repair but for
the regulation of the circadian rhythm. The following
genes were cloned:hCry1, hCry2; mCry1, mCry2;
(Hsu et al., 1996; Todo et al., 1997). Cry1 andCry2
are expressed in several tissues such as liver, testis,
brain and retina acting as circadian photoreceptors.
Cry1 andCry2 are thought to play antagonistic roles
becausecry1-/- mice display shortened andcry2-/-
mice lengthened circadian periods (Thresher et al.,
1998; van der Horst et al., 1999; Vitaterna et al.,
1999). Cry reveals an interesting evolutionary change
of a DNA repair enzyme into a protein with entirely
different functions.

3. Base excision repair (BER)

BER is responsible for removing DNA-damaged
bases, which can be recognised by specific en-
zymes, the DNA glycosylases. The main lesions
subjected to BER are oxidised DNA bases, arising
spontaneously within the cell, during inflammatory
responses, or from exposure to exogenous agents,
including ionising radiation and long-wave UV light.
Another main source of lesions repaired by BER
is DNA alkylation induced by endogenous alky-
lating species and exogenous carcinogens such as
nitrosamines. Also, various anticancer drugs such
as DTIC and temozolomide induce alkylation le-
sions repaired by BER. Lesions removed from DNA
by BER include incorporated uracil, fragmented
pyrimidines, N-alkylated purines (7-methylguanine,
3-methyladenine, 3-methylguanine), 8-oxo-7,8-
dihydroguanine (8-OxoG) and thymine glycol and
many others (seeTable 2). The major oxidised
purine, 8-OxoG, is highly mutagenic because of
mispairing with adenine.N-Alkylpurines are vulner-
able to spontaneous hydrolysis of theN-glycosylic
bond, giving rise to apurinic/apyrimidinic (AP) sites,
which are one of the most frequent (>104 formed
per day per cell;Lindahl, 1990) and potent lethal
(Loeb, 1985) lesions. Both modified bases and AP
sites are repaired by BER, the mechanism of which
is shown in Fig. 1. It proceeds in the following
steps:

1. Recognition, base removal and incision: The first
step in BER is carried out by specific DNA gly-
cosylases which recognize and remove damaged
or incorrect (e.g. uracil) bases by hydrolyzing the
N-glycosidic bond (for review seeScharer and
Jiricny, 2001). In mammalian cells, 11 different
glycosylases have been found characterised by dif-
ferent substrate specificities and modes of action
(summarised inTable 2). These DNA glycosylases
are subgrouped into type I and type II glycosylases.
Type I glycosylases remove modified bases leaving
an AP site in DNA (e.g. MPG), whereas type II
enzymes remove the base and subsequently cleave
the AP site by an endogenous 3′-endonuclease
activity giving rise to a single-strand break (e.g.
OGG1). For type I glycosylases, incision into the
phosphodiester bond of the AP site occurs by AP
endonuclease (APE1 alias APEX, Ref-1 or HAP1)
resulting in 5′-deoxyribose-5-phosphate (5′dRP)
and 3′-OH (Wilson and Barsky, 2001). APE1 has
been shown to interact with and to be stimulated
by XRCC1 (Vidal et al., 2001). The deoxyribose
residue at a regular AP site can either be in the
furanose or aldehyde form.

2. Nucleotide insertion: The insertion of the first nu-
cleotide is not dependent on the chemical structure
of the AP site. During short-patch BER, 5′dRP is
displaced by DNA polymerase� (Pol�), which
inserts a single nucleotide (Dianov et al., 1992;
Sobol et al., 1996; Wiebauer and Jiricny, 1990).
Pol� is also involved in long-patch BER (Dianov
et al., 1999; Klungland and Lindahl, 1997), in-
serting the first nucleotide at reduced AP sites
(Podlutsky et al., 2001).

3. Decision between short- and long-patch repair:
The critical step in the decision between short-
and long-patch BER is the removal of 5′dRP
upon the insertion of the first nucleotide. Besides
polymerisation activity, Pol� also exerts lyase ac-
tivity and is thereby able to catalyze the release
of the hemiacetal form of 5′-dRP residues from
incised AP sites by�-elimination (Matsumoto
and Kim, 1995; Prasad et al., 1998; Sobol et al.,
2000). In contrast, oxidised or reduced AP sites,
3′-unsaturated aldehydes or 3′-phosphates are
resistant to �-elimination by Pol� (Nakamura
et al., 2000). Upon dissociation of Pol� from
damaged DNA, further processing occurs by
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Table 2
Human DNA glycosylases

Glycosylase Specificity Reference

MBD4 U and T opposite G Hendrich and Bird, 1998; Hendrich et al., 1999
MPG 3-MeA, 7-MeG, 3-MeG ethenoA, hypoxanthine O’Connor and Laval, 1991; Chakravarti et al., 1991;

Samson et al., 1991
MYH A opposite 8-OxoG Slupska et al., 1996; Slupska et al., 1999
NEIL1 Formamidopyrimidines oxidised pyrimidines (e.g.

thymine glycol)
Hazra et al., 2002a; Hazra et al., 2002b

NEIL2 5-Hydroxyuracil; 5-hydroxycytosine Hazra et al., 2002a; Hazra et al., 2002b
NEIL3 Fragmented and oxidised pyrimidines Takao et al., 2002
NTH1 Ring-saturated, oxidised and fragmented pyrimidines Aspinwall et al., 1997; Hilbert et al., 1997
OGG1 8-OxoG paired with C, T and G Rosenquist et al., 1997; Radicella et al., 1997; Bjoras

et al., 1997
SMUG1 Uracil Nilsen et al., 2001; Haushalter et al., 1999
TDG U, T or ethenoC, opposite G T opposite G, C and T Neddermann et al., 1996; Neddermann and Jiricny,

1993; Neddermann and Jiricny, 1994
UNG Uracil Olsen et al., 1989; Muller and Caradonna, 1991

PCNA-dependent long-patch repair (Frosina et al.,
1996; Matsumoto et al., 1999). For example, the
removal of 8-OxoG occurs mainly via short-patch
BER; only 25% of lesions are repaired via the
long-patch repair pathway (Dianov et al., 1998).

4. Strand displacement and DNA-repair synthesis by
long-patch BER: In contrast to short-patch repair,
in which upon single base insertion by Pol� the
DNA backbone is directly sealed, several addi-
tional steps occur during long-patch repair. Af-
ter dissociation of Pol�, strand displacement and
further DNA synthesis is accomplished by Polε

or Pol� together with PCNA and RF-C (Stucki
et al., 1998), resulting in longer repair patches of
up to 10 nucleotides. The removal of the deoxyri-
bosephosphate flap structure (5′-dRPflap) is exe-
cuted by flap endonuclease FEN1 stimulated by
PCNA (Klungland and Lindahl, 1997).

5. Ligation: The ligation step is performed by DNA
ligases I and III (for review seeTomkinson et al.,
2001). Ligase I interacts with PCNA and Pol�
and participates mainly in long-patch BER (Prasad
et al., 1996; Srivastava et al., 1998). DNA lig-
ase III interacts with XRCC1, Pol� and PARP-1
[poly(ADP-ribose) polymerase-1] and is involved
only in short-patch BER (Kubota et al., 1996).

An important role in the regulation of BER is played
by p53. p53 stimulates BER in vitro by direct interac-
tion with APE and Pol�, stabilizing Pol� binding to

AP sites (Zhou et al., 2001a). Whether or not transcrip-
tional activation by p53 is involved in the regulation
of BER is not yet clear. Thus it has been shown that
mutated p53 lacking transcriptional activity is even
more effective in stimulating BER than wt p53 (Offer
et al., 2001). On the other hand, DNA alkylation dam-
age induced by MMS is efficiently repaired in cells
expressing wt p53, whereas p53-deficient cells display
slower repair (Seo et al., 2002), which is accompa-
nied by increased chromosomal and killing sensitivity
(Lackinger and Kaina, 2000). This p53-related pheno-
type is presumably based on the expression of Pol�,
which is significantly lower in p53-deficient cells (Seo
et al., 2002). Also, treatment of mice with the oxida-
tive agent 2-nitropropane induces the expression of
p53 and Pol�, and enhances BER activity (Cabelof
et al., 2002).

An enzyme not directly involved in BER but reduc-
ing the level of oxidised purines in DNA is MTH1.
It hydrolyzes 8-oxo-dGTP ot 8-oxo-dGMP, thereby
removing it from the nucleotide pool and prevent-
ing 8-OxoG from becoming incorporated into DNA
(Furuichi et al., 1994; Sakumi et al., 1993).

4. Mismatch repair (MMR)

The mismatch repair (MMR) system is responsible
for removal of base mismatches caused by spon-
taneous and induced base deamination, oxidation,
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Fig. 1. Mechanism of base excision repair (BER). Recognition of the DNA lesion occurs by a specific DNA glycosylase which removes
the damaged base by hydrolyzing theN-glycosidic bond. The remaining AP site is processed by APE. Depending on the cleavability of
the resulting 5′dRP by Pol�, repair is performed via the short or long patch BER pathway. For further description see text.

methylation and replication errors (Modrich and
Lahue, 1996; Umar and Kunkel, 1996). The main
targets of MMR are base mismatches such as G/T
(arising from deamination of 5-methylcytosine), G/G,
A/C and C/C (Fang and Modrich, 1993). MMR not

only binds to spontaneously occurring base mis-
matches but also to various chemically induced DNA
lesions such as alkylation-inducedO6-methylguanine
paired with cytosine or thymine (Duckett et al.,
1996), 1,2-intrastrand (GpG) cross-links generated by
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cisplatin (Mello et al., 1996; Yamada et al., 1997),
UV-induced photoproducts (Wang et al., 1999), purine
adducts of benzo[a]pyrene-7,8-dihydrodiol-9,10-
epoxides (Wu et al., 1999a), 2-aminofluorene or
N-acetyl-2-aminofluorene (Li et al., 1996), and
8-oxoguanine (Colussi et al., 2002). The importance
of MMR in maintaining genomic stability and re-
ducing mutation load is clearly illustrated by MMR
deficiency syndromes such as HNPCC (Aaltonen
et al., 1993; Lynch et al., 1993). The steps by which
MMR proceeds are as follows (seeFig. 2):

1. Recognition of DNA lesions: The recognition of
mismatches or chemically modified bases is per-
formed by the so-called MutS� complex, which
binds to the lesions. MutS� is composed of the
MutS homologous proteins MSH2 (Fishel et al.,

Fig. 2. Mechanism of mismatch repair (MMR). Recognition of
DNA lesions occurs by MutS� (MSH2–MSH6). According to
the molecular switch model, binding of MutS�–ADP triggers
ADP → ATP transition, stimulates intrinsic ATPase activity, and
provokes the formation of a hydrolysis-independent sliding clamp,
followed by binding of the MutL� complex (MLH1–PMS2). Ac-
cording to the hydrolysis-driven translocation model, ATP hydrol-
ysis induces translocation of MutS� along the DNA. After forma-
tion of a complex composed of MutS� and MutL�, excision is
performed by ExoI and repair synthesis by Pol�.

1993; Leach et al., 1993) and MSH6 (also known
as GT-binding protein, GTBP;Palombo et al.,
1995). For an efficient binding to mismatches,
phosphorylation of the MutS� complex is required
(Christmann et al., 2002). MSH2 can also form a
complex with the mismatch repair protein MSH3.
This complex is designated MutS� (Acharya et al.,
1996; Palombo et al., 1996). Depending on the
binding partner, the heterodimers have different
substrate specificities and, therefore, play a dif-
ferent role in mismatch repair. Thus, the MutS�
complex is able to bind to base–base mismatches
and to insertion/deletion mismatches (Umar et al.,
1994), whereas MutS� is only capable of binding
to insertion/deletion mismatches (Genschel et al.,
1998; Palombo et al., 1996).

2. Strand discrimination: Presently, it is not clear
how MMR discriminates between the parental and
the newly synthesised DNA strand. It is supposed
that the daughter strand is identified by non-ligated
single-strand breaks (SSB) arising during repli-
cation (Thomas et al., 1991). The problem with
this model is that the SSB and the mismatch can
be separated from each other by a great distance.
How then can MutS� recognize both the SSB
and the mismatch? An answer could be provided
by the studies concerning the role of ATP during
MMR. Both proteins (MSH2 and MSH6) contain
ATP/ADP-binding sites (Gradia et al., 1999). Mu-
tation of these sites leads to attenuation of MMR
activity but not to abrogation of GT binding. Two
models are under consideration concerning the
role of ATP/ADP binding and ATP hydrolysis: In
the molecular switch model (Fishel, 1998; Gradia
et al., 1997), it is assumed that the MutS�–ADP
complex is responsible for the recognition and
binding of the mismatch (‘active state’). Bind-
ing to a mismatch triggers ADP→ ATP transi-
tion and stimulates the intrinsic ATPase activity
(Berardini et al., 2000; Gradia et al., 2000), lead-
ing to conformational changes and the formation
of a hydrolysis-independent sliding clamp (Gradia
et al., 1999). This sliding clamp passively diffuses
from the mismatch and signals the dissociation
of the MMR proteins from the DNA (‘inactive
state’) (Gradia et al., 1997). In this model, hy-
drolysis of ATP by MutS� provokes conforma-
tional changes and thereby enables the binding of
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MutL�. In addition, dissociation of MutS� from
the DNA depends on ATP binding and not hydrol-
ysis (Alani et al., 1997; Iaccarino et al., 1998). In
the hydrolysis-driven translocation model, MutS�
uses the energy gained by ATP hydrolysis to
translocate actively along the DNA from the site
of mismatch recognition to a site responsible for
signaling the strand specificity (most likely SSB).
The assembly of the MutL� complex occurs at this
signaling site (Blackwell et al., 1998a,b, 2001).

3. Excision and repair synthesis: Upon binding to
the mismatch, MutS� associates with another
heterodimeric complex (MutL�), consisting of
the MutL homologous mismatch repair pro-
teins MLH1 and PMS2 (Li and Modrich, 1995;
Nicolaides et al., 1994; Papadopoulos et al., 1994).
The excision of the DNA strand containing the
mispaired base is performed by exonuclease I
(Genschel et al., 2002) and the new synthesis
by Pol� (Longley et al., 1997). Whether or not
MMR is inducible by genotoxic stress is still a
matter of debate. The promoter of MSH2 har-
bours a p53-binding site and was found to be in-
ducible upon co-transfection with p53 and Fos/Jun
(Scherer et al., 2000; Warnick et al., 2001). In-
crease of MSH2 mRNA in genotoxin-exposed cells
however still needs to be demonstrated. Treatment
of cells with alkylating agents such as MNNG
provoked nuclear translocation of MSH2/MSH6
and increase of MutS�-mismatch binding activity
(Christmann and Kaina, 2000). Therefore, both
transcriptional and post-translational mechanisms
appear likely to be involved in the regulation of
MMR.

5. Nucleotide excision repair (NER)

Bulky DNA adducts, such as UV-light-induced
photolesions [(6-4) photoproducts (6-4PPs) and cy-
clobutane pyrimidine dimers (CPDs)], intrastrand
cross-links, large chemical adducts generated from
exposure to aflatoxine, benzo[a]pyrene and other
genotoxic agents are repaired by nucleotide exci-
sion repair (NER) (for review seeFriedberg, 2001;
Hanawalt, 2001; Mullenders and Berneburg, 2001).
In NER about 30 proteins are involved. Cells de-
fective in NER belong to different complementation

groups and UV-hypersensitive disorders such as xe-
roderma pigmentosum (XP), Cockayne’s syndrome
(CS), trichothiodystrophy (TTD), UV-sensitive syn-
drome (UVSS) and a variety of UV-hypersensitive
rodent lines, in which the defect can be completed
by human genes belonging to the excision repair
cross-complementing group (ERCC) (for review see
Vermeulen et al., 1997). NER consists of two distinct
pathways termed global genomic repair (GGR) and
transcription-coupled repair (TCR) (Fig. 3). GGR is
thought to be largely transcription-independent and
removes lesions from the non-transcribed domains
of the genome and the non-transcribed strand of
transcribed regions. 6-4PPs, which distort the DNA
more than CPDs, are removed rapidly and predomi-
nantly by GGR, such that it may be difficult to detect
TCR experimentally. In contrast, CPDs are removed
very slowly by GGR. Their removal occurs more
efficiently by TCR from the transcribed strand of ex-
pressed genes (for review seeBalajee and Bohr, 2000;
Hanawalt, 2002; Mullenders and Berneburg, 2001).

TCR removes different RNA-polymerase-blocking
lesions from the transcribed strand of active genes
(Bohr et al., 1985; Mellon et al., 1987). Defects in
TCR are directly linked to the Cockayne’s syndrome
(Cockayne, 1936; van Hoffen et al., 1993), which in-
volves two complementation groups: CSA (Henning
et al., 1995) and CSB (Troelstra et al., 1992). CS cells
display increased sensitivity to UV light, normal GGR
and deficient TCR (Evans and Bohr, 1994; Venema
et al., 1990). Since CS cells show a severe defect in
the resumption of RNA synthesis, CS is also referred
to as a ‘transcription syndrome’ besides being a ‘re-
pair syndrome’ (Bootsma and Hoeijmakers, 1993). As
opposed to most other UV-sensitive syndromes (with
the exception of UVSS), CS patients do not suffer
from elevated tumour incidences, which is most likely
explained by efficient elimination of damaged cells
by apoptosis (Ljungman and Zhang, 1996). CSA and
CSB as well as XPB, XPD (as part of TFIIH) and
XPG protein are essential for TCR (Le Page et al.,
2000; Schaeffer et al., 1993). The reduced transcrip-
tion in CSB cells upon UV irradiation is caused by
blockage of RNA polymerase II (RNAPII) at the pho-
toproduct sites (Selby et al., 1997). RNAPII activity
is reduced in CSA-, CSB- and XPB-deficient cells
(Balajee et al., 1997; Dianov et al., 1997), and CSB
but not CSA interacts directly with RNAPII (Tantin



M. Christmann et al. / Toxicology 193 (2003) 3–34 11

Fig. 3. Mechanism of nucleotide excision repair (NER). During global genomic repair (GGR), recognition of the DNA lesion occurs by
XPC–HR23B, RPA–XPA or DDB1–DDB2. DNA unwinding is performed by the transcription factor TFIIH, and excision of the lesion
by XPG and XPF–ERCC1. Finally, resynthesis occurs by Pol� or Pol� and ligation by DNA ligase I. During transcription-coupled repair
(TCR) the induction of the lesion results in blockage of RNAPII. This leads to assembly of CSA, CSB and/or TFIIS at the site of the
lesion, by which RNAPII is removed from the DNA or displaced from the lesion, making it accessible to the exonucleases XPF–Ercc1
and XPG cleaving the lesion-containing DNA strand. Resynthesis again occurs by Pol� or Pol� and ligation by DNA ligase I.
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et al., 1997; van Gool et al., 1997). When RNAPII
is blocked at the site of DNA lesions, CSA and CSB
mediate the activation of the common NER pathway
by release of the stalled RNAPII elongation complex
from the damaged DNA (seeFig. 3). TCR and GGR
could be linked through a direct interaction of CSB
and XPG (Iyer et al., 1996). The way CSB interferes
with the RNAPII transcription activity is not yet clear,
although CSB likely acts as a ‘repair-transcription un-
coupling factor’ (van Oosterwijk et al., 1996). Recent
work suggests that CSB uses its DNA translocase ac-
tivity to remove the RNAPII complex from the le-
sion (Svejstrup, 2003). Exposure to DNA-damaging
agents such as cisplatin and UV light induces CSA-
and CSB-dependent ubiquitination of the RNAPII at
stalled transcription forks, facilitating its displacement
and degradation by proteolysis (Bregman et al., 1996;
Yang et al., 2003). In S. cerevisiae, an additional fac-
tor (Def1) has been identified, which interacts with
Rad26 (the CSB homologue;van Gool et al., 1994)
and which is supposed to be responsible for ubiqui-
tination and proteolysis of RNAPII when the lesion
cannot be repaired (Woudstra et al., 2002). Whether or
not this factor is also present in human cells remains
to be established. Interestingly, UV irradiation reduces
the amount of the hypophosphorylated (DNA-binding)
form of RNAPII and thereby suppresses the initiation
of transcription upon UV. Reactivation of transcrip-
tion initation could thus be mediated by restoration
of the hypophosphorylated form of RNAPII (Rockx
et al., 2000). In vitro studies have shown that the
factor TFIIS may play a role in some situations, in
which it unleashes a cryptic nucleolytic activity of the
RNAPII to cleave up to 35 nucleotides from the 3′
end of the nascent RNA product as it regresses on the
template, so that the arresting lesion becomes acces-
sible for repair, before the re-elongation reaction re-
sumes (Tornaletti et al., 1999). In this context, it was
shown that RNAPII can be displaced from CPDs and
cisplatin intrastrand cross-link in a TFIIS-dependent
manner without being released from template DNA.
Displacement of RNAPII for approximately 20 nu-
cleotides from the lesion produces enough space for
effective repair (Tornaletti et al., in press). An addi-
tional factor reported to be associated with TCR is
the human homologue of factor 2 (HuF2, TTF2) and
ATP-dependent RNA polymerase II termination fac-
tor (Liu et al., 1998), which was shown to release

RNA polymerases I and II stalled at CPDs (Hara et al.,
1999). We should note that MMR involving MSH2
was reported to stimulate TCR. This work however
could not be confirmed by others and was finally re-
tracted.

Another syndrome involved in TCR of CPDs is the
so-called UV-sensitive syndrome (UVSS) (Itoh et al.,
1995; Spivak et al., 2002) which does not belong to
either of the CS complementation groups, indicating
TCR to be more complex than initially thought. In
contrast to TCR, the mechanism of GGR has been
elucidated in great detail. It proceeds as follows (see
Fig. 3):

1. DNA-damage recognition: The XPC–HR23B and
RPA–XPA complexes identify DNA lesions. The
XPC–HR23B complex recognizes UV-induced
6-4PPs with high specificity (Hey et al., 2002);
it does not recognize CPDs, 8-oxoguanine or
O6-methylguanine (Kusumoto et al., 2001). In
contrast, the RPA–XPA complex recognizes
6-4PPs and DNA treated with cisplatin (Burns
et al., 1996; He et al., 1995; Jones and Wood,
1993; Vasquez et al., 2002). Not solved yet is
the question of which complex is first during the
sequential assembly of the NER proteins. Some
authors claim that XPC–HR23B binds first to a
helix distortion, which is verified by RPA–XPA
and TFIIH (Sugasawa et al., 2001). Others suggest
that RPA–XPA is the first DNA-damage recog-
nition factor (Wakasugi and Sancar, 1999). An-
other important factor involved in the UV damage
recognition process is the ‘damaged DNA binding
protein’ (DDB), a heterodimer of two polypeptides
DDB1 (p127) and DDB2 (p48) that belong to the
XPE-complementation group (for review seeTang
and Chu, 2002). DDB has been shown to be in-
volved in recognition and to stimulate the excision
of CPDs in vitro with high efficiency, whereas
6-4PPs are only marginally recognised. Cells
lacking DDB display defective GGR but normal
TCR (Hwang et al., 1999). DDB has a very high
affinity to UV-damaged DNA (500 000-fold pref-
erence over undamaged DNA) and thus has been
proposed to bind first to the lesion, thereby recruit-
ing XPC/HR23B to the lesion in non-transcribed
strand (Hwang et al., 1999). DDB was however
also suggested to recruit XPA–RPA to the site
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of DNA damage (Wakasugi et al., 2001, 2002),
indicating presumably several ways of recruit-
ment. An important observation was made by
the demonstration that human p53-deficient pri-
mary fibroblasts display a defect in the repair
of CPDs and reduced GGR efficiency (Ford and
Hanawalt, 1995, 1997). This seems to be based on
attenuated, DNA-damage-induced expression of
the NER-associated genes XPC and DDB2 (alias
p48). Both genes are inducible in human fibrob-
lasts upon exposure to UV-C light, which occurs
through p53 (Adimoolam and Ford, 2002; Hwang
et al., 1999). p53-deficient Li–Fraumeni syndrome
cells do not show DDB2 upregulation and they are
correspondingly defective in repair of CPDs (Ford
and Hanawalt, 1995). This defect however can be
restored by transfection with p53, whose overex-
pression on its own is able to stimulate DDB2
transcription (Hwang et al., 1999). XPC is also in-
ducible by ionizing radiation and alkylating agents
(Amundson et al., 2002), and by treatment with
benzo[a]pyrene diol epoxide (Wang et al., 2003).
Whereas p53-dependent induction of DDB2 was
shown in human cells, in mice DDB2 does not
seem to be inducible upon UV-C exposure (Tan
and Chu, 2002). Therefore most rodent cell lines
are considered to be impaired in GGR. In the ab-
sence of p53, XPC and DDB2 can also be induced
via overexpression of BRCA1 (Hartman and Ford,
2002; Takimoto et al., 2002).

2. DNA unwinding: After recognition of the lesion,
the transcription factor TFIIH consisting of seven
different proteins (XPB, XPD, GTF2H1, GTF2H2,
GTF2H3, GTF2H4, CDK7, CCNH and MNAT1) is
recruited to the site of DNA damage. This recruit-
ment is most likely mediated by the XPC–HR23B
complex (Yokoi et al., 2000). TFIIH harbours DNA
helicase activity, which is exerted by its helicase
subunits XPB (Schaeffer et al., 1993) and XPD
(Schaeffer et al., 1994). It is responsible for un-
winding the DNA around the lesion (Evans et al.,
1997a).

3. Excision of the DNA lesion: After damage recogni-
tion and the formatin of an open complex, excision
of the lesion is carried out by dual incisions at de-
fined positions flanking the DNA damage (Evans
et al., 1997b). 3′-incision is performed by XPG
(Habraken et al., 1994; O’Donovan et al., 1994),

and 5′-incision by the XPF–ERCC1 complex
(Sijbers et al., 1996).

4. Repair synthesis: The arising DNA gap is filled
in by Pol� and Polε and sealed by DNA ligase I
and accessory factors (Aboussekhra et al., 1995;
Araujo et al., 2000; Mu et al., 1995).

6. DNA double-strand break repair

DNA double-strand breaks (DSBs) are highly
potent inducers of genotoxic effects (chromosomal
breaks and exchanges) and cell death (Dikomey
et al., 1998; Lips and Kaina, 2001; Pfeiffer et al.,
2000). In higher eukaryotes a single non-repaired
DSB inactivating an essential gene can be suffi-
cient for inducing cell death via apoptosis (Rich
et al., 2000). There are two main pathways for
DSB repair, homologous recombination (HR) and
non-homologous end-joining (NHEJ), which are
error-free and error-prone, respectively (seeFigs. 4
and 5). In simple eukaryotes like yeast, HR is the
main pathway, whereas in mammals the NHEJ path-
way predominates (Cromie et al., 2001; Haber, 2000).
The usage of NHEJ and HR also depends on the
phase of the cell cycle. NHEJ occurs mainly in
G0/G1, whereas HR occurs during the late S and
G2 phases (Johnson and Jasin, 2000; Takata et al.,
1998).

The NHEJ system ligates the two ends of a DSB
without the requirement of sequence homology be-
tween the DNA ends (for review seeCritchlow and
Jackson, 1998). The first step in NHEJ is the bind-
ing of a heterodimeric complex consisting of the
proteins Ku70 (Reeves and Sthoeger, 1989) and
Ku80 (alias XRCC5;Jeggo et al., 1992) to the
damaged DNA, thus protecting the DNA from ex-
onuclease digestion. Following DNA binding, the
Ku heterodimer associates with the catalytic subunit
of DNA–PK (XRCC7, DNA–PKcs;Sipley et al.,
1995; Hartley et al., 1995) thereby forming the ac-
tive DNA–PK holoenzyme (Gottlieb and Jackson,
1993; Smith and Jackson, 1999). DNA–PKcs is acti-
vated by interaction with a single-strand DNA at the
site of DSB (Hammarsten et al., 2000; Martensson
and Hammarsten, 2002) and displays Ser/Thr kinase
activity (Kim et al., 1999). One of the targets of
DNA–PKcs is XRCC4 (Leber et al., 1998), which
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Fig. 4. Mechanism of non-homologous end joining (NHEJ).
Recognition of and binding to damaged DNA occurs by the
Ku70–Ku80 complex. Thereafter, the Ku heterodimer binds to
DNA–PKcs, forming the DNA–PK holoenzyme. DNA–PK acti-
vates XRCC4–ligase IV, which links the broken DNA ends to-
gether. Before re-ligation by XRCC4–ligase IV, the DNA ends
are processed by the MRE11–Rad50–NBS1 complex, presumably
involving FEN1 and Artemis.

forms a stable complex with DNA ligase IV. The
XRCC4–ligase IV complex binds to the ends of
DNA molecules and links together duplex DNA
molecules with complementary but non-ligatable ends
(Lee et al., 2003). The XRCC4–ligase IV complex
cannot directly re-ligate most DSBs generated by
mutagenic agents—they have to be processed first.
Processing of DSBs is mainly performed by the
MRE11–Rad50–NBS1 complex (Maser et al., 1997;
Nelms et al., 1998), which displays exonuclease, en-
donuclease and helicase activity (Paull and Gellert,
1999; Trujillo et al., 1998) and removes excess DNA
at 3′ flaps. One candidate responsible for removal
of 5′ flaps is the flap endonuclease 1 (FEN1). Defi-
ciency for this protein leads to a strong reduction in
the usage of the NHEJ pathway (Wu et al., 1999b).

Another protein involved in processing overhangs
during NHEJ is the protein Artemis, which acts in
a complex with DNA–PK (Moshous et al., 2001).
Artemis displays single-strand-specific exonuclease
activity. Upon forming a complex with and being
phosphorylated by DNA–PKcs, Artemis acquires
endonuclease activity, degrading single-strand over-
hangs and hairpins, which seems to be necessary for
processing 5′ and 3′ overhangs during NHEJ (Ma,
2002).

During HR, the damaged chromosome enters into
physical contact with an undamaged DNA molecule
with which it shares sequence homology and which
is used as template for repair (for review seeSonoda
et al., 2001). HR is initiated by a nucleolytic re-
section of the DSB in the 5′–3′ direction by the
MRE11–Rad50–NBS1 complex. The resulting 3′
single-stranded DNA is thereafter bound by a hep-
tameric ring complex formed by Rad52 proteins
(Stasiak et al., 2000), which protects against exonu-
cleolytic digestion. Rad52 competes with the Ku
complex for the binding to DNA ends. This may de-
termine whether the DSB is repaired via the HR or
the NHEJ pathway (Van Dyck et al., 1999). Rad52
interacts with Rad51 (Kagawa et al., 2001; Reddy
et al., 1997; Shen et al., 1996) and RPA (Park et al.,
1996), stimulating DNA strand exchange activity of
Rad51 (New et al., 1998). The human Rad51 pro-
tein is the homologue of theE. coli recombinase
RecA. It forms nucleofilaments, binds single- and
double-stranded DNA and promotes ATP-dependent
(Benson et al., 1994) and RPA-stimulated (Sigurdsson
et al., 2001) interaction with a homologous region
on an undamaged DNA molecule. Thereafter Rad51
catalyzes strand-exchange events with the comple-
mentary strand in which the damaged DNA molecule
invades the undamaged DNA duplex, displacing
one strand as D-loop (Baumann and West, 1997;
Gupta et al., 1998). In yeast, Rad54 (ATRX) displays
dsDNA-dependent ATPase activity (Petukhova et al.,
1998) and uses the energy for unwinding of the ds-
DNA (Petukhova et al., 1999), thus stimulating DNA
strand exchange. The assembly of the Rad51 nucle-
oprotein filament is facilitated by five different par-
alogues of Rad51 (Rad51B, C and D; and XRCC2 and
XRCC3) that could play a role during pre-synapsis
(Liu et al., 2002; Masson et al., 2001; Schild et al.,
2000; Takata et al., 2000; Wiese et al., 2002). Another
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Fig. 5. Mechanism of homologous recombination (HR). Homologous recombination starts with nucleolytic resection of the DSB in the
5′ → 3′ direction by the MRE11–Rad50–NBS1 complex, forming a 3′ single-stranded DNA fragment to which Rad52 binds. Rad52 interacts
with Rad51, provoking a DNA strand exchange with the undamaged, homologous DNA molecule. Assembly of the Rad51 nucleoprotein
filament is facilitated by different Rad51 paralogues (such as Rad51B, Rad51C and Rad51D, XRCC2 and XRCC3). After DNA synthesis,
ligation and branch migration, the resulting structure is resolved.

important protein that interacts with Rad 51 is RPA
(Golub et al., 1998; Park et al., 1996). It is supposed
that RPA stabilizes Rad51-mediated DNA pairing by
binding to the displaced DNA strand (Eggler et al.,
2002). After DSB recognition and strand exchange
performed by Rad proteins, the resulting structures
are resolved according to the classical model of Hol-
liday (Holliday, 1964; see alsoConstantinou et al.,
2001).

7. DNA-damage signaling and checkpoint control:
ATM and ATR

Recognition and signaling of DNA damage is a
prerequisite for the induction of subsequent cellular
responses such as increased repair, cell cycle arrest
and apoptosis. Recognition of DNA breaks is accom-
plished by a group of phosphatidylinositol-3-kinases.
These kinases are ATM (ataxia telangiectasia mutated;
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Savitsky et al., 1995; Smith et al., 1999), ATR (ataxia
telangiectasia related) and the catalytic subunit of
DNA–PK (Hartley et al., 1995). Their targets share
the consensus sequence Ser–Thr–Gln–Glu (Kim
et al., 1999). ATR and ATM can bind to DNA ends
of damaged DNA, which results in activation of the
kinase activity (Smith and Jackson, 1999; Suzuki
et al., 1999; Unsal-Kacmaz et al., 2002). Activation
of ATM in response to ionizing radiation is most
likely not dependent on direct binding of ATM to
DNA strand breaks but rather on changes in chro-
matin structure. These changes are thought to induce,
by a yet unknown mechanism, autophosphoryla-
tion of ATM at Ser1981, leading to dissociation
of ATM dimers into active monomers (Bakkenist
and Kastan, 2003). Several DNA-damage repair
proteins such as BRCA1, MSH2, MSH6, MLH1,
ATM, BLM, and the RAD50–MRE11–NBS1 com-
plex, can be co-immunoprecipitated in the so called
BRCA1-associated surveillance complex, named
BASC (Wang et al., 2000a). Latest results indicate
that MLH1 and MSH2 are directly involved in the
activation of ATM. Thus it was shown that, upon
exposure to IR, MLH1 binds to ATM and MSH2
binds to CHK2 (Brown et al., 2003). Therefore, it is
tempting to speculate that the MMR system recog-
nises IR-induced lesions forming a molecular scaffold
that allows ATM to phosphorylate CHK2, thereby
activating the S-phase checkpoint.

ATM phosphorylates Chk2 (Matsuoka et al., 2000;
Zhou et al., 2000) at Thr 68, whereas ATR targets
Chk1 by phosphorylation at Ser345 (Guo et al., 2000;
Liu et al., 2000). Both Chk2 and Chk1 are able to
phosphorylate p53 at Ser20 (Shieh et al., 2000), giv-
ing rise to blockage of the MDM2-binding site-thus
leading to release of p53 from MDM2-a protein that
normally targets p53 for ubiquitin-dependent degra-
dation (Chehab et al., 1999, 2000; Hirao et al., 2000;
Unger et al., 1999). ATM and ATR can also directly
phosphorylate p53 at Ser15, thereby increasing its
transactivation activity (Banin et al., 1998; Canman
et al., 1998). Stabilisation and increased transactiva-
tion activity of p53 leads to the induction of p21,
which inhibits the Cdk2–cyclin E–PCNA complex,
resulting in G1/S blockage. ATR-activated Chk1 can
also phosphorylate Cdc25a at Ser123. This leads to
ubiquitination and degradation of Cdc25a (Mailand
et al., 2000), which is thereafter not able anymore

to activate the Cdk2–cyclin E complex by dephos-
phorylation of CDK2 at Thr14 and Tyr15, resulting
in p53-independent G1/S arrest. ATR-activated Chk1
was also shown to phosphorylate Cdc25c at Ser216,
which induces binding of Cdc25c to 14-3-3� pro-
tein (Peng et al., 1997; Sanchez et al., 1997). Within
this complex, Cdc25c is transported out of the nu-
cleus and therefore unable to dephosphorylate/activate
Cdk1–CyclinB, which finally leads to G2/M arrest
(Dalal et al., 1999).

Besides regulation of cell cycle checkpoints, ATM
and ATR have been shown to regulate DNA repair.
Thus ATM phosphorylates several DNA-repair asso-
ciated proteins such as Nbs1 (Gatei et al., 2000; Lim
et al., 2000), Brca1 (Xu et al., 2002), Rad9 (Chen
et al., 2001) and c-Abl, resulting in phosphorylation
of Rad51 (Chen et al., 1999; Shangary et al., 2000).
It also phosphorylates 2AX (Burma et al., 2001).
ATM-mediated phosphorylation of Nbs1 in response
to ionizing radiation at Ser343 and Ser278 is neces-
sary for the formation of nuclear Nbs1/Rad50/Mre11
foci at the site of DNA damage (Zhao et al., 2000).
NF-�B activation in response to DSBs is mediated
via ATM-dependent phosphorylation of I�B kinase
(Li et al., 2001). Similar to ATM, ATR has also been
shown to phosphorylate several DNA repair proteins
or repair-associated factors such as Rad17 (Post et al.,
2001) and Brca1 (Tibbetts et al., 2000). In addition,
upon DNA damage ATM and DNA–PKcs mediate the
phosphorylation of c-Abl; this targets p53 and p73,
which exert pro-apoptotic activity (Kharbanda et al.,
1998; Wang, 2000). Overall, ATM/ATR-mediated
phosphorylation of proteins, notably Chk1, Chk2 and
p53, is crucial in provoking the signal leading to
the G1/S and G2/M cell cycle arrest, apoptosis and
enhanced DNA repair (seeFig. 6).

8. Role of PARP in DNA repair

An important role in the regulation of DNA re-
pair is played by the members of the so-called
poly(ADP-ribose) polymerase (PARP) family. These
chromatin-associated enzymes modify several pro-
teins by poly(ADP-ribosyl)ation. During this process
PARP consumes NAD+ to catalyze the formation of
highly negatively charged poly(ADP-ribose) poly-
mers of linear or branched structure with a length
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Fig. 6. ATM/ATR in DNA repair, cell cycle control and apoptosis. Recognition and signaling of DNA damage is mediated by ATM and
ATR, which bind to broken DNA ends and possibly some DNA adducts. Upon activation of their intrinsic kinase activity, ATM and/or
ATR phosphorylate Chk1 and Chk2, which in turn phosphorylate p53 and CDc25, thus provoking cell cycle arrest. In addition, ATM
and/or ATR phosphorylate several other proteins (NBS1, Brca1) and thereby stimulate DNA repair or, at high damage level, the induction
of apoptosis (via c-Abl, p53).

of 200–400 monomers, releasing nicotinamide as
a by-product (for review seeLindahl et al., 1995).
The degradation of polymers is performed by
poly(ADP-ribose) glycohydrolase (PARG). PARG
exhibits endoglycosidic and exoglycosidic activity
and produces a mono(ADP-ribosyl)ated protein plus
mono(ADP-ribose) (Brochu et al., 1994; Thomassin
et al., 1992).

Up to now, six different PARPs have been de-
scribed, sharing a conserved catalytic domain respon-
sible for poly(ADP-ribose) synthesis. While PARP-1
(Alkhatib et al., 1987; Cherney et al., 1987) plays
an important role in DNA repair, the role of PARP-2
(Ame et al., 1999; Berghammer et al., 1999; Still
et al., 1999), PARP-3 (Johansson, 1999), vPARP
(Kickhoefer et al., 1999), Tankyrase 1 and 2 (Chi and
Lodish, 2000; Kaminker et al., 2001; Lyons et al.,
2001; Smith et al., 1998), and TiPARP (Ma et al.,
2001) is not yet completely determined. Besides its
role in the regulation of DNA repair, PARP-1 has

also been implicated in mammalian longevity (for
review seeBürkle, 2001). It is considered to be a
master switch between apoptosis and necrosis (for
review seeSoldani and Scovassi, 2002). PARP-1 has
a molecular weight of 113 kDa and comprises three
different domains: the N-terminal DNA-binding do-
main consisting of two zinc-fingers and the nuclear
location signal, the C-terminal catalytic subunit which
binds NAD+, and an internal domain which functions
as acceptor site for poly(ADP-ribose) (Kameshita
et al., 1984). In response to DNA damage induced
by ionizing radiation or alkylating agents, PARP-1
can specifically bind to SSBs (Gradwohl et al., 1989;
Menissier-de Murcia et al., 1989). Upon binding to
DNA, PARP-1 becomes auto-poly-(ADP-ribosyl)ated,
which allows it to non-covalently interact with other
proteins (for review seeLindahl et al., 1995). It has
been argued that PARP-1 (and presumably PARP-2)
is involved in DNA repair by three different mecha-
nisms (summarised inFig. 7): (i) By direct interaction
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Fig. 7. Role of PARP in the regulation of DNA repair. Binding of PARP-1 to SSBs results in auto-poly(ADP)-ribosylation and increased
activity. Activated PARP-1 is involved in DNA repair via: (i) direct interaction and poly(ADP) ribosylation of XRCC1 and Pol�, leading
to stimulation of BER; (ii) poly(ADP) ribosylation and activation of the 20S proteasome, leading to relaxation of the chromatin structure;
and (iii) potential poly(ADP) ribosylation of DNA-repair proteins, thus modulating DNA repair.

of automodified PARP-1 with XRCC1 (Caldecott
et al., 1996; Masson et al., 1998) and Pol� (Dantzer
et al., 2000), which are both key proteins in BER.
PARP-2 interacts with XRCC1, Pol�, and DNA lig-
ase III (Schreiber et al., 2002). PARP-1 stimulates
in vitro, together with FEN-1, strand displacement
and DNA-repair synthesis by Pol�, thus stimulating
long-patch BER (Lavrik et al., 2001; Prasad et al.,
2001; Sanderson and Lindahl, 2002). It should be

noted that PARP-1-deficient mice are hypersensitive
to methylnitrosurea (MNU) and cell lines gener-
ated from these animals are hypersensitive to MMS,
showing reduced DNA strand-break resealing and in-
creased apoptosis (Beneke et al., 2000; Trucco et al.,
1998). (ii) By remodelling of chromatin structure
upon the induction of DNA damage. Thus it has
been shown that automodified PARP-1 interacts with
the 20s proteasome via ADP-ribose polymers. The



M. Christmann et al. / Toxicology 193 (2003) 3–34 19

interaction and poly(ADP)-ribosylation of the 20s
proteasome results in increased proteolytic activity
of the proteasome (Mayer-Kuckuk et al., 1999). The
activated 20s proteasome has been shown to be re-
sponsible for degradation of oxidatively damaged his-
tones. Among different histones, histone H1 displays
the highest degradation rate; after 30 min of oxidative
stress, it is already fully degraded (Ullrich and Grune,
2001; Ullrich et al., 1999). Histone degradation leads
to chromatin structure remodelling, giving DNA re-
pair enzymes access to the site of DNA damage.
(iii) A specific poly(ADP-ribose)-binding sequence
motif was found in a number of DNA-repair and
DNA-damage checkpoint proteins such as p53, p21,
XPA, MSH6, DNA ligase III, XRCC1, DNA–PKcs,
Ku70, NF-�B, Pole, inducible nitric oxide syn-
thase, caspase-activated DNase and telomerase. By
poly(ADP)-ribosylation of this motif, PARP-1 could
potentially interfere with several functions these pro-
teins are involved in, such as regulation of transcrip-
tion, DNA repair, cell cycle regulation and apoptosis
(Pleschke et al., 2000).

9. Replication arrest and translesion synthesis

Bulky DNA lesions block DNA replication di-
rectly. DNA-damage-induced replication arrest leads
to the recruitment of several DNA repair proteins
to the position of the DNA lesion, e.g. the arrested
replication fork. The question of how this recruitment
is mediated is not fully solved. During normal DNA
replication PCNA (proliferating cell nuclear antigen)
forms a sliding clamp (Thelen et al., 1999) and stim-
ulates replication by DNA polymerases (Tsurimoto,
1998). Loading of PCNA onto the DNA is performed
by a so-called clamp loader, which is identical to
the replication factor C (RFC) (Ellison and Stillman,
2001; Waga and Stillman, 1998). It is assumed that
upon replication arrest, various factors can take over
the function of PCNA and RFC. The function of
PCNA in DNA repair is most likely accomplished
by a DNA-damage-specific clamp (Rad9-1-1 com-
plex), formed by the proteins Rad9, Hus1 and Rad1
(Burtelow et al., 2001; Lieberman et al., 1996; Parker
et al., 1998a; St. Onge et al., 1999; Volkmer and
Karnitz, 1999). It could serve as a docking platform
for various DNA repair proteins. In this context it

should be noted that Hus1 translocates upon ionizing
radiation from the cytosol into the nucleus, where it
associates with PCNA and hRad9 (Komatsu et al.,
2000). Another human protein, Rad17 (Parker et al.,
1998b), binds to chromatin prior to DNA damage. It
gets phosphorylated after the induction of DNA dam-
age by ATR and thus recruits the Rad9-1-1 complex
onto chromatin (Bao et al., 2001). Rad17 has been
shown to interact directly with the Rad9-1-1 complex
in yeast (Venclovas and Thelen, 2000) and in humans
(Rauen et al., 2000). Rad17 is supposed to replace the
major subunit of the RFC complex (RFC1), forming
a new complex with the smaller RFC subunits des-
ignated as Rad17–RFC, as has already been shown
in yeast (Kai et al., 2001). Rad17–RFC functions as
a clamp loader for Rad9-1-1 (Shiomi et al., 2002;
Zou et al., 2002), which is supposed to target DNA
repair genes to the site of damage. In yeast it has been
shown that the error-prone polymerase DinB interacts
with Hus1/Rad1, and its association with chromatin
is Rad17-dependent (Kai and Wang, 2003).

DNA repair proteins associated with recovery from
and bypassing of the replication block (translesion
synthesis) are named ‘error-prone’ DNA polymerases
(for a recent review seeLehmann, 2002). Because of
different naming of polymerases by different groups,
the nomenclature of the polymerases is slightly con-
fusing. A recent consensus was published by Burg-
ers (Burgers et al., 2001). An overview on error-prone
DNA polymerases and their specificities is given in
Table 3.

Translesion DNA synthesis is mainly mediated
by polymerase eta, kappa, iota, mu and zeta (for re-
view seeKunkel et al., 2003). Pol eta (Pol� alias
PolH; hRad30; XPV;Johnson et al., 1999; Masutani
et al., 1999; McDonald et al., 1999) is a low-fidelity
enzyme, which lacks intrinsic proof-reading exonu-
clease activity and therefore shows high error rates
(10−2 to 10−3) (Matsuda et al., 2001; Washington
et al., 2001). Pol� is implicated in the development of
the variant form of xeroderma pigmentosum (XP) and
has been shown to reduce the UV sensitivity in XP
cells (Yamada et al., 2000). The human polymerase
kappa (Pol�; DINB; Gerlach et al., 1999, 2001;
Johnson et al., 2000a; Ogi et al., 1999) is the ho-
mologue of theE. coli dinB-encoded DNA poly-
merase IV. Pol� also exhibits a high error rate; but
in contrast to other error-prone DNA polymerases,
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Table 3
Human error-prone DNA polymerases involved in bypass of DNA replication-blocking lesions

Polymerase Specificity Reference

Pol eta (Pol�) A-A opposite (T-T) dimer Johnson et al., 2000b
G opposite 3′ T of (6-4) T-T photoproduct Johnson et al., 2001
C opposite AAF-G Masutani et al., 2000
C opposite intrastrand cross-links Masutani et al., 2000
A or C opposite 8-OxoG Haracska et al., 2000
A or G opposite AP-sites Zhang et al., 2000a
A opposite thymine glycol Zhang et al., 2000b

Pol kappa (Pol�) AP-sites and (AAF)-adducts Ohashi et al., 2000b
A opposite thymine-glycol Fischhaber et al., 2002
A opposite 8-OxoG Haracska et al., 2002
A opposite AP-sites and 8-OxoG Kusumoto et al., 2002

Pol iota (Pol�) T or G opposite the 3′ T of the CPD Tissier et al., 2000a
G>T>A opposite AP-sites Zhang et al., 2001
C>A opposite 8-oxoguanine Zhang et al., 2001
C opposite AAF-G Zhang et al., 2001
A opposite 3′ T of TT (6-4) photoproduct Frank et al., 2001
Base excision repair Bebenek et al., 2001

Pol zeta (Pol	) G opposite 3′ T of (6-4) T-T photoproduct Johnson et al., 2001
A opposite 5′ T of (6-4) T-T photoproduct

Pol mu (Pol
) 8-Oxoguanine, AP-sites, AAF-G anti-benzo[a]pyrene-N(2)-dG Zhang et al., 2002
A-A opposite (T-T) dimer Zhang et al., 2002
V(D) J-recombination Ruiz et al., 2001
Non-homologous end-joining Ruiz et al., 2001

Pol lambda (Pol�) Base excision repair Garcia-Diaz et al., 2000
Pol sigma (Pol�) Sister chromatid cohesion Wang et al., 2000b
Pol theta (Pol�) Interstrand cross-link repair Sharief et al., 1999

it has a moderate processivity and can synthesize
more than 25 nucleotides during translesion synthe-
sis (Ohashi et al., 2000a). Polymerase iota (Pol�;
RAD30B; McDonald et al., 2001) is the homologue
of S. cerevisiae RAD30. It displays a high error fre-
quency (1× 10−2), with adenine replicated with the
highest and thymine with the lowest accuracy (Tissier
et al., 2000b). The human polymerase mu (Pol
;
Dominguez et al., 2000) has a strong homology to the
terminal deoxynucleotidyl transferase. Polymerase
zeta (Pol	; REV3L; Gibbs et al., 1998; Lin et al.,
1999; Xiao et al., 1998) consists of two subunits
(REV3 and REV7), which cooperate with REV1
(Murakumo, 2002; Murakumo et al., 2000, 2001).

Besides translesion synthesis, some error-prone
DNA polymerases also appear to be involved in direct
removal of lesions. Thus, human polymerase lambda
(Pol�) exhibits 32% homology to Pol�, displays de-

oxyribose phosphate lyase (dRPase) activity, inserts
nucleotides in small gaps containing a 5′-phosphate
group (Garcia-Diaz et al., 2002) and is therefore asso-
ciated with BER (Garcia-Diaz et al., 2000). Pol� was
shown to play a role in BER of G/U and A/U pairs
by its intrinsic 5′-deoxyribose phosphate (dRP) lyase
activity (Bebenek et al., 2001). Little is known about
the human DNA polymerase sigma (Pol�, TRF4
[DNA topoisomerase I related function];Walowsky
et al., 1999), which is required for sister chromatid
cohesion (Wang et al., 2000b). The same is true for
polymerase theta (Pol�), which is homologous to the
mus308 gene of Drosophila melanogaster, coding
for a putative DNA polymerase-helicase involved in
interstrand cross-link repair (Sharief et al., 1999).
Interestingly, human Pol
 plays a role in somatic
hypermutation of immunoglobulin genes (Reynaud
et al., 2001) and participates in DNA end-filling
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during V(D)J recombination and non-homologous
end-joining (Ruiz et al., 2001), which indicates the
pleiotropic functions of this group of enzymes.

Error-prone DNA polymerases are majorly re-
sponsible for mutations induced by DNA-damaging
agents giving rise to bulky replication-blocking le-
sions. They are the missing link many laborato-
ries have searched for between the error-generating
SOS functions ofE. coli (controlled by RecA and
UmuCD) and the mammalian ‘SOS response’. Their
discovery opens up a broad field of future research,
addressing highly important questions as to their
role in genomic instability in tumours, in dam-
age defense against environmental carcinogens and
therapeutic drugs and in the cellular response and
individual susceptibility to DNA-damaging toxic
compounds.
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